

November 2017

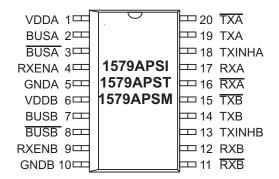
HI-1579A

MIL-STD-1553 / 1760 3.3V Monolithic Dual Transceivers

DESCRIPTION

The HI-1579A is a low power CMOS dual transceiver designed to meet the requirements of the MIL-STD-1553 and MIL-STD-1760 specifications.

The transmitter section of each bus takes complementary CMOS / TTL Manchester II bi-phase data and converts it to differential voltages suitable for driving the bus isolation transformer. Separate transmitter inhibit control signals are provided for each transmitter.


The receiver section of the each bus converts the 1553 bus bi-phase data to complementary CMOS / TTL data suitable for input to a Manchester decoder. Each receiver has a separate enable input, which forces both receive output signals to the bus idle state (logic "0") when disabled.

To minimize the package size for this function, the transmitter outputs are internally connected to the receiver inputs, so that only two pins are required for connection to each coupling transformer.

FEATURES

- Compliant to MIL-STD-1553A and B, MIL-STD-1760 and ARINC 708A
- 3.3V single supply operation
- Industrial and extended temperature ranges with optional burn-in

PIN CONFIGURATIONS

20 Pin Plastic ESOIC - WB package

PIN DESCRIPTIONS

(DIP & SOIC)	SYMBOL	FUNCTION	DESCRIPTION
1	VDDA	power supply	+3.3 volt power for transceiver A
2	BUSA	analog	MIL-STD-1533 bus driver A, positive signal
3	BUSA	analog	MIL-STD-1553 bus driver A, negative signal
4	RXENA	digital input	Receiver A enable. If low, forces RXA and RXA low
5	GNDA	power supply	Ground for transceiver A
6	VDDB	power supply	+3.3 volt power for transceiver B
7	BUSB	analog	MIL-STD-1533 bus driver B, positive signal
8	BUSB	analog	MIL-STD-1553 bus driver B, negative signal
9	RXENB	digital input	Receiver B enable. If low, forces RXB and RXB low
10	GNDB	power supply	Ground for transceiver B
11	RXB	digital output	Receiver B output, inverted
12	RXB	digital output	Receiver B output, non-inverted
13	TXINHB	digital input	Transmit inhibit, bus B. If high BUSB, BUSB disabled
14	TXB	digital input	Transmitter B digital data input, non-inverted
15	TXB	digital input	Transmitter B digital data input, inverted
16	RXA	digital output	Receiver A output, inverted
17	RXA	digital output	Receiver A output, non-inverted
18	TXINHA	digital input	Transmit inhibit, bus A. If high BUSA, BUSA disabled
19	TXA	digital input	Transmitter A digital data input, non-inverted
20	TXA	digital input	Transmitter A digital data input, inverted

FUNCTIONAL DESCRIPTION

The HI-1579A dual transceiver contains differential voltage source drivers and differential receivers. It is intended for applications using a MIL-STD-1553 A/B data bus. The device produces a trapezoidal output waveform during transmission.

TRANSMITTER

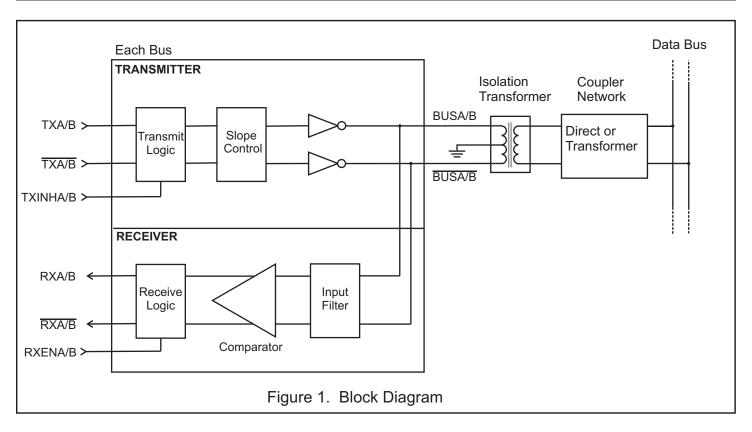
Data input to the device's transmitter section is from the complementary CMOS inputs TXA/B and TXA/B. The transmitter accepts Manchester II bi-phase data and converts it to differential voltages on BUSA/B and BUSA/B. The transceiver outputs are either direct- or transformer-coupled to the MIL-STD-1553 data bus. Both coupling methods produce a nominal voltage on the bus of 7.5 volts peak to peak.

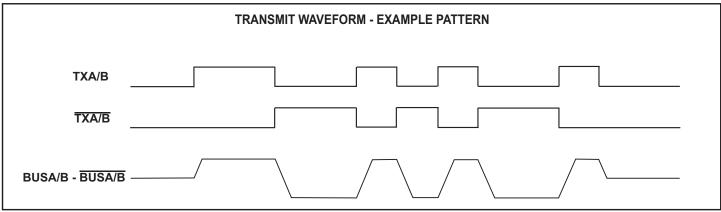
The transmitter is automatically inhibited and placed in the high impedance state when both TXA/B and $\overline{TXA/B}$ are driven with the same logic state. A logic "1" applied to the TXINHA/B input forces the transmitter to the high impedance state, regardless of the state of TXA/B and $\overline{TXA/B}$.

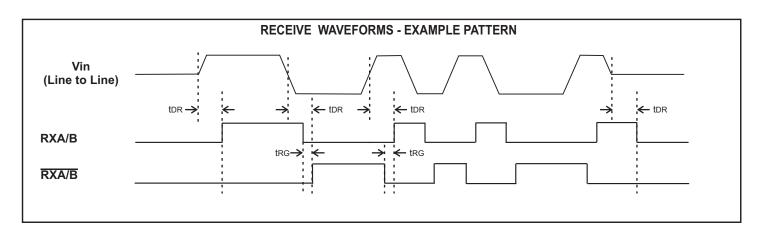
RECEIVER

The receiver accepts bi-phase differential data from the MIL-STD-1553 bus through the same direct- or transformer-coupled interface as the transmitter. The

receiver's differential input stage drives a filter and threshold comparator to produce CMOS data at the RXA/B and RXA/B output pins. When the MIL-STD-1553 bus is idle and RXENA or RXENB are high, RXA/B will be logic "0".


The receiver outputs are forced to the bus idle state (logic "0") when the RXENA or RXENB is low.


MIL-STD-1553 BUS INTERFACE


A direct-coupled interface (see Figure 2) uses a 1:2.5 ratio isolation transformer and two 55 ohm isolation resistors between the transformer and the bus. The primary center-tap of the isolation transformer must be connected to GND.

In a transformer-coupled interface (see Figure 2), the transceiver is also connected to a 1:2.5 isolation transformer which in turn is connected to a 1:1.4 coupling transformer. The transformer coupled method also requires two coupling resistors equal to 75% of the bus characteristic impedance (Zo) between the coupling transformer and the bus.

Figure 3 and Figure 4 show test circuits for measuring electrical characteristics of both direct- and transformer-coupled interfaces respectively. (See electrical characteristics on the following pages).

ABSOLUTE MAXIMUM RATINGS

Supply voltage (VDD)	-0.3 V to +5 V		
Logic input voltage range	-0.3 V dc to +3.6 V		
Receiver differential voltage	50 Vp-p		
Driver peak output current	+1.0 A		
Reflow Solder Temperature	260°C		
Junction Temperature	175°C		
Storage Temperature	-65°C to +150°C		

RECOMMENDED OPERATING CONDITIONS

Supply Voltage		
VDD3.3V ±5%		
Temperature Range		
Industrial40°C to +85°C Hi-Temp55°C to +125°C		

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

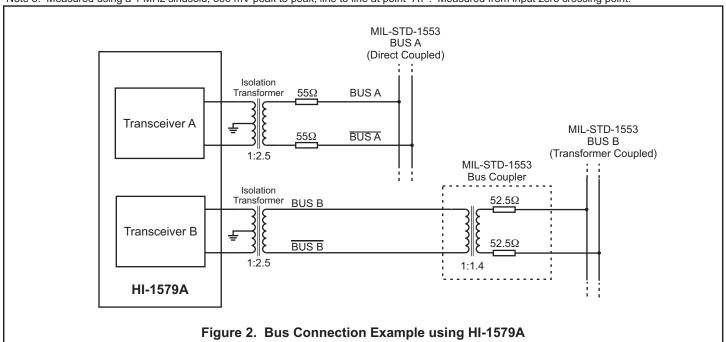
DC ELECTRICAL CHARACTERISTICS

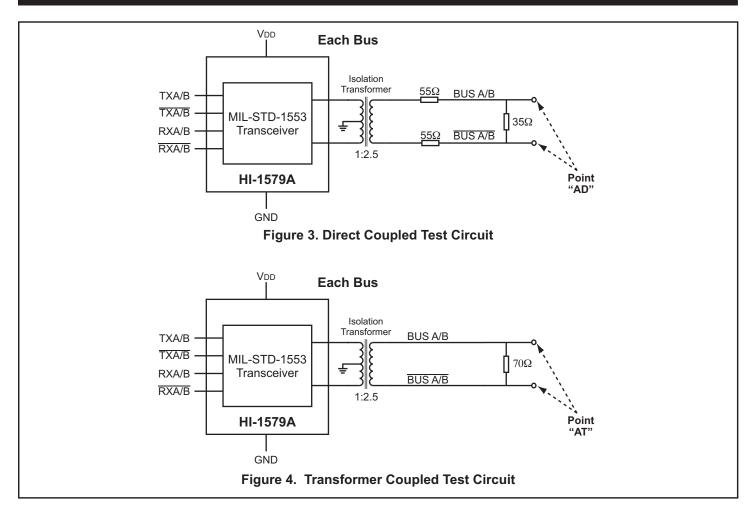
VDD = 3.3 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Operating Voltage	VDD		3.15	3.30	3.45	V
Total Supply Current	Icc1	Not Transmitting		4	17	mA
	Icc2	Transmit one bus @ 50% duty cycle		225	320	mA
	Icc3	Transmit one bus @ 100% duty cycle		425	640	mA
Power Dissipation	PD1	Not Transmitting			0.06	W
	PD2	Transmit one bus @ 100% duty cycle		0.5	1.0	W
Min. Input Voltage (HI)	Vih	Digital inputs	2.0			V
Max. Input Voltage (LO)	VIL	Digital inputs			30%	VDD
Min. Input Current (HI)	lін	Digital inputs			20	μA
Max. Input Current (LO)	lıL	Digital inputs	-20			μA
Min. Output Voltage (HI)	Voн	louτ = -1.0mA, Digital outputs	90%			VDD
Max. Output Voltage (LO)	Vol	louт = 1.0mA, Digital outputs			10%	VDD
RECEIVER (Measured at Point "Ap" in	Figure 3 unle	ss otherwise specified)				
Input resistance	Rin	Differential (at chip pins)	2			Kohm
Input capacitance	CIN	Differential			5	pF
Common mode rejection ratio	CMRR		40			dB
Input Level	Vin	Differential			9	Vp-p
Input common mode voltage	Vicм	Volts peak AC or Volts DC	-10.0		+10.0	V-pk
Threshold Voltage - Direct-coupled Detect	VTHD	Trapezoidal 1553 test signal, 200ns Rise / Fall times Measured at Point "Ap" in Figure 3 Onset of RXA/B, RXA/B Pulse Drop-Out	1.21		1.56	Vp-p
No Detect	VTHND	No pulse at RXA/B, RXA/B			0.28	Vp-p
Theshold Voltage - Transformer-coupled Detect	Vтно	Trapezoidal 1553 test signal, 200ns Rise / Fall time Measured at Point "A _T " in Figure 4 Onset of RXA/B, RXA/B Pulse Drop-Out	0.515		0.665	Vp-p
No Detect	VTHND	No pulse at RXA/B, RXA/B			0.20	Vp-p

DC ELECTRICAL CHARACTERISTICS (cont.)

VDD = 3.3 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).


	PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
TRANSMITTER	(Measured at Point "AD" in Fi	gure 3 unless	otherwise specified)				
Output Voltage	Direct coupled	Vouт	35 ohm load (Measured at Point "Ap" in Figure 3)	6.7		9.0	Vp-p
	Transformer coupled	Vоит	70 ohm load (Measured at Point "At" in Figure 4)	20.0		27.0	Vp-p
Output Noise		Von	Differential, inhibited			10.0	mVp-p
Output Dynamic Offset Voltage Direct coupled		Vdyn	35 ohm load (Measured at Point "Ap" in Figure 3)	-24		+24	mV
Transformer coupled		Vdyn	70 ohm load (Measured at Point "Aτ" in Figure 4)	-100		+100	mV
Output Capacitan	ce	Соит	1 MHz sine wave			15	pF


AC ELECTRICAL CHARACTERISTICS

VDD = 3.3 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER SYMBOL		TEST CONDITIONS	MIN	TYP	MAX	UNITS
RECEIVER (Measure	ed at Point "A⊤"	in Figure 4)				
Receiver Delay	tor	From input zero crossing to RXA/B or RXA/B			450	ns
					Note 3	
Receiver gap time	trg	Spacing between RXA/B and RXA/B pulses	90		365	ns
			Note 1		Note 2	
Receiver Enable Delay	tren	From RXENA/B rising or falling edge to			40	ns
		RXA/B or RXA/B			40	115
TRANSMITTER (Measure	ed at Point "A _D "	in Figure 3)				
Driver Delay	tот	TXA/B, TXA/B to BUSA/B, BUSA/B			150	ns
Rise time	tr	35 ohm load	100		300	ns
Fall Time	tf	35 ohm load	100		300	ns
Inhibit Delay	tdi-H	Inhibited output			100	ns
	tDI-L	Active output			150	ns

- Note 1. Measured using a 1 MHz sinusoid, 20 V peak to peak, line to line at point "AT" (Guaranteed but not tested).
- Note 2. Measured using a 1 MHz sinusoid, 860 mV peak to peak, line to line at point "AT" (100% tested).
- Note 3. Measured using a 1 MHz sinusoid, 860 mV peak to peak, line to line at point "AT". Measured from input zero crossing point.

HEAT SINK ESOIC & QFN PACKAGES

The HI-1579APSI/T/M uses a 20-pin thermally enhanced SOIC package. This packages includes a metal heat sink located on the bottom surface of the device. The heat sink may be soldered down to the printed circuit board for optimum thermal dissipation. The heat sink is electrically isolated and may be soldered to any convenient power or ground plane.

APPLICATIONS NOTE

Holt Applications Note AN-500 provides circuit design notes regarding the use of Holt's family of MIL-STD-1553 transceivers. Layout considerations, as well as recommended interface and protection components are included.

RECOMMENDED TRANSFORMERS

The HI-1579A transceiver has been characterized for compliance with the electrical requirements of MIL-STD-1553 when used with the following transformers. Holt

recommends Premier Magnetics parts as offering the best combination of electrical performance, low cost and small footprint.

MANUFACTURER	PART NUMBER	APPLICATION	TURNS RATIO	DIMENSIONS
Premier Magnetics	PM-DB2791S	Isolation	Single 1:2.5	.400 x .400 x .185 inches
Premier Magnetics	PM-DB2756	Isolation	Dual 1:2.5	.930 x .575 x .185 inches
Premier Magnetics	PM-DB2702	Stub coupling	1:1.4	.625 x .500 x .250 inches

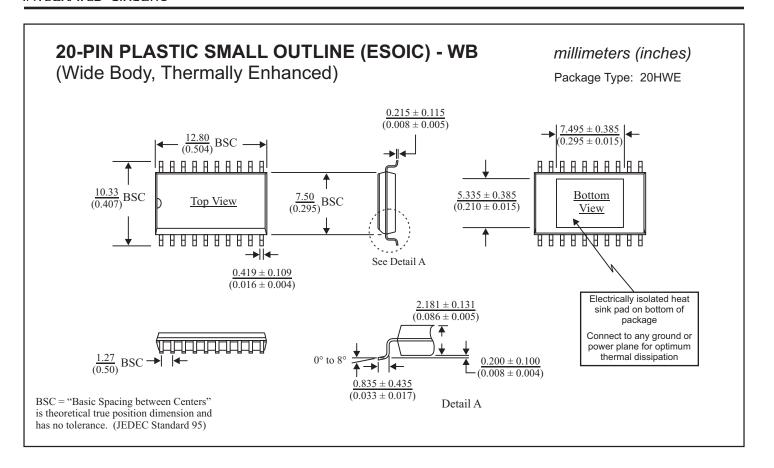
ORDERING INFORMATION

HI - <u>1579A PS x x</u> (Plastic)

PART NUMBER	LEAD FINISH
Blank	Tin / Lead (Sn / Pb) Solder
F	100% Matte Tin (Pb-free RoHS compliant)

PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN
I	-40°C TO +85°C	I	No
Т	-55°C TO +125°C	Т	No
М	-55°C TO +125°C	М	Yes

PART	PACKAGE
NUMBER	DESCRIPTION
PS	20 PIN PLASTIC ESOIC, Thermally Enhanced Wide SOIC w/Heat Sink (20HWE)


HI-1579A

REVISION HISTORY

Document	Rev.	Date	Description of Change
DS1579A	New	11/18/16	Initial Release.
	Α	11/29/17	Correct typo in DC Electrical Characteristics Table; VOL incorrectly labeled as VIH. Remove Power Dissipation from Absolute Maximum Ratings Table.

PACKAGE DIMENSIONS

